Part Number Hot Search : 
EL5308IU SD101A 2SD382 ML145106 M3H12FAD 30015 SP13TR EMICO
Product Description
Full Text Search
 

To Download MC33282 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Order this document by MC33282/D
MC33282 MC33284
Low Input Offset, High Slew Rate, Wide Bandwidth, JFET Input Operational Amplifiers
The MC33282/284 series of high performance operational amplifiers are quality fabricated with innovative bipolar and JFET design concepts. This dual and quad amplifier series incorporates JFET inputs along with a patented Zip-R-Trim(R) element for input offset voltage reduction. These devices exhibit low input offset voltage, low input bias current, high gain bandwidth and high slew rate. Dual-doublet frequency compensation is incorporated to produce high quality phase/gain performance. In addition, the MC33282/284 series exhibit low input noise characteristics for JFET input amplifiers. Its all NPN output stage exhibits no deadband crossover distortion and a large output voltage swing. They also provide a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance. The MC33282/284 series are specified over -40 to +85C and are available in plastic DIP and SOIC surface mount packages. * Low Input Offset Voltage: Trimmed to 200 V
HIGH PERFORMANCE OPERATIONAL AMPLIFIERS
SEMICONDUCTOR TECHNICAL DATA
DUAL
8 8 1 1
P SUFFIX PLASTIC PACKAGE CASE 626
D SUFFIX PLASTIC PACKAGE CASE 751 (SO-8)
PIN CONNECTIONS
Output 1 1 2 Inputs 1 3 VEE 4 (Top View) - + 8 7 1 - 2 + 6 Inputs 2 5 VCC Output 2
* * * * * * * * * * * *
Low Input Bias Current: 30 pA Low Input Offset Current: 6.0 pA High Input Resistance: 1012 Low Noise: 18 nV Hz @ 1.0 kHz High Gain Bandwidth Products: 35 MHz @ 100 kHz High Slew Rate: 15 V/s Power Bandwidth: 175 kHz Unity Gain Stable: w/Capacitance Loads to 300 pF Large Output Voltage Swing: +14.1 V/-14.6 V Low Total Harmonic Distortion: 0.003% Power Supply Drain Current: 2.15 mA per Amplifier Dual Supply Operation: 2.5 V to 18 V (Max)
14
QUAD
14 1 1
P SUFFIX PLASTIC PACKAGE CASE 646
D SUFFIX PLASTIC PACKAGE CASE 751A (SO-14)
PIN CONNECTIONS
Output 1 1 2 Package SOP-8 Plastic DIP TA = -40 to +85C 40 85C SO-14 Plastic DIP Output 2 Inputs 1 3 - 1 + 4 - + 14 Output 4 13 Inputs 4 12 11 VEE + 2 - 3 + - 10 Inputs 3 9 8 Output 3 (Top View)
(c) Motorola, Inc. 1996 Rev 0
ORDERING INFORMATION
Op Amp Function Dual MC33282P MC33284D Quad MC33284P
Zip-R-Trim is a registered trademark of Motorola Inc.
Device MC33282D
Operating Temperature Range
VCC 4 5 Inputs 2 6 7
MOTOROLA ANALOG IC DEVICE DATA
1
MC33282 MC33284
MAXIMUM RATINGS
Rating Supply Voltage (VCC to VEE) Input Differential Voltage Range Input Voltage Range Output Short Circuit Duration (Note 2) Maximum Junction Temperature Storage Temperature Maximum Power Dissipation Symbol VS VIDR VIR tSC TJ Tstg PD Value +36 (Note 1) (Note 1) Indefinite +150 - 60 to +150 (Note 2) Unit V V V sec C C mW
NOTES: 1. Either or both input voltages should not exceed VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2).
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.)
Characteristics Input Offset Voltage (RS = 10 , VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C Average Temperature Coefficient of Input Offset Voltage RS = 10 , VCM = 0 V, VO = 0 V, TA = Tlow to Thigh Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C Common Mode Input Voltage Range (VIO = 5.0 mV, VO = 0 V) Large Signal Voltage Gain (VO = 10 V, RL = 2.0 k) TA = +25C TA = -40 to +85C Output Voltage Swing (VID = 1.0 V) RL = 2.0 k RL = 2.0 k RL = 10 k RL = 10 k Common Mode Rejection (Vin = 11 V) Power Supply Rejection VCC/VEE = +15 V/-15 V, +5.0 V/-15 V, +15 V/-5.0 V Output Short Circuit Current (VID = 1.0 V, output to ground) Source Sink Power Supply Current (VO = 0 V, per amplifier) TA = +25C TA = -40 to +85C Symbol |VIO| Figure 3 -- -- |VIO|/T IIB 3 -- 4, 5 -200 -2.0 IIO -100 -1.0 VICR AVOL 6 7 50 25 8, 9, 10 VO + VO - VO + VO - CMR PSR ISC 11 12 75 13, 14 15 -- ID 15 -- -- 2.15 -- 2.75 3.0 +21 -27 -- -15 mA 100 -- mA 13.2 -- 13.7 -- 70 +13.7 -13.9 +14.1 -14.6 90 -- -13.2 -- -14.3 -- dB dB 200 -- -- -- V -11 -- 6.0 -- -12 +14 100 1.0 -- +11 pA nA V V/mV 30 -- 200 2.0 pA nA 15 -- 0.2 -- 2.0 4.0 V/C Min Typ Max Unit mV
2
MOTOROLA ANALOG IC DEVICE DATA
MC33282 MC33284
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.)
Characteristics Slew Rate (Vin = -10 V to +10 V, RL = 2.0 k, CL = 100 pF, AV = +1.0) Gain Bandwidth Product (f = 100 kHz) AC Voltage Gain (RL = 2.0 k, VO = 0 V, f = 20 kHz) Unity Gain Frequency (Open Loop) Gain Margin (RL = 2.0 k, CL = 0 pF) Phase Margin (RL = 2.0 k, CL = 0 pF) Channel Separation (f = 20 Hz to 20 kHz) Power Bandwidth (VO = 20 Vpp, RL = 2.0 k, THD 1.0%) Distortion (RL = 2.0 k, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) Differential Input Resistance (VCM = 0 V) Differential Input Capacitance (VCM = 0 V) Equivalent Input Noise Voltage (RS = 100 , f = 1.0 kHz) Equivalent Input Noise Current (f = 1.0 kHz) Symbol SR GBW AVO fU Am m CS BWP THD |ZO| Rin Cin en in 25 23 24 19, 20 19, 20 22 Figure 16, 28, 29 17 18, 21 Min 8.0 20 -- -- -- -- -- -- -- -- -- -- -- -- Typ 15 35 1750 5.5 15 40 -120 175 0.003 37 1012 5.0 18 0.01 Unit V/s MHz V/V MHz dB Degrees dB kHz % pF nV/ Hz pA/ Hz
Figure 1. Equivalent Circuit Schematic (Each Amplifier)
VCC D1 R2 R3 R6 R10 R13 Q15
Q8 D2 C1 D3 C3
J3
J4
Q17
Vin J2
Q5
+ Q11 J5 C4 Q9 C5 C6 R17 Q18 Vin D4 R16
J1 Q10
A
B
C
D
Q7
Q13 Q4 Q6 R5 Z1 Q1 Q2 Q3 R1 R4 C2 R8 Q12 Q14 R12 R13 R15
D5 VO Q16
VEE
MOTOROLA ANALOG IC DEVICE DATA
3
MC33282 MC33284
PD (max), MAXIMUM POWER DISSIPATION (mW)
Figure 2. Maximum Power Dissipation versus Temperature
5.0 VIO , INPUT OFFSET VOLTAGE (mV) 3.0
Figure 3. Input Offset Voltage versus Temperature for Typical Units
VCC = +15 V VEE = -15 V RS = 10 VCM = 0 V Unit 1 1.0 Unit 2 -1.0 Unit 3 -3.0 -5.0 -55 Unit 1 Unit 2
2400 2000 MC33282P & MC33284P 1600 1200 800 400 0 -60 -40 -20 MC33284D MC33282D
Unit 3
0
20
40
60
80
100 120 140 160 180
-25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (C)
TA, AMBIENT TEMPERATURE (C)
Figure 4. Input Bias Current versus Temperature
400 IIB, INPUT BIAS CURRENT (pA) IIB, INPUT BIAS CURRENT (pA) 350 300 250 200 150 100 50 0 -55 -25 0 25 50 VCC, VEE = 15 V 75 100 125 TA, AMBIENT TEMPERATURE (C) VCC, VEE = 2.5 V 600 500 400 300 200 100 0 -15
Figure 5. Input Bias Current versus Common Mode Voltage
VCC = +15 V VEE = -15 V TA = 25C
-12 -9.0 -6.0
-3.0
0
3.0
6.0
9.0
12
15
VCM, COMMON MODE VOLTAGE (V)
VICR , INPUT COMMON MODE VOLTAGE RANGE (V)
Figure 6. Input Common Mode Voltage Range versus Temperature
AVOL, OPEN LOOP VOLTAGE GAIN (dB) VCC VCC = +5.0 V to +18 V VEE = -5.0 V to -18 V VIO = 5.0 mV VO = 0 V 150 140 130 120 110 100 -55
Figure 7. Open Loop Voltage Gain versus Temperature
VCC = +15 V VEE = -15V RL = 2.0 k f = 10 Hz VO = 10 V to +10 V
VCC-0.5 V VCC-1.0 V VCC-1.5 V
VEE+1.5 V VEE+1.0 V VEE+0.5 V VEE -55 -25 0 25 50 75 100 125
-25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (C)
TA, AMBIENT TEMPERATURE (C)
4
MOTOROLA ANALOG IC DEVICE DATA
MC33282 MC33284
Figure 8. Output Voltage Swing versus Supply Voltage
40 36 VO, OUTPUT VOLTAGE (Vpp ) 32 28 24 20 16 12 8.0 4.0 0 0 RL = 10 k RL = 2.0 k TA = 25C VO, OUTPUT VOLTAGE (Vpp ) 30 27 24 21 18 15 12 9.0 6.0 3.0 2.0 4.0 6.0 8.0 10 12 14 16 18 20 0 1.0 k VCC = +15 V VEE = -15 V RL = 2.0 k AV = +1.0 THD = 1.0% TA = 25C 10 k 100 k 1.0 M
Figure 9. Output Voltage versus Frequency
VCC, VEE SUPPLY VOLTAGE (V)
f, FREQUENCY (Hz)
Figure 10. Output Saturation Voltage versus Load Current
Vsat , OUTPUT SATURATION VOLTAGE (V) CMR, COMMON MODE REJECTION (dB) VCC TA = -55C VCC-4.0 V VCC-8.0 V VCC-12 V VEE+4.0 V VEE+2.0 V VEE 2.0 4.0 6.0 8.0 10 TA = -55C 12 14 16 TA = +25C 18 20 TA = 125C VCC = +15 V RL to Gnd VEE = -15 V 120 100 80 60
Figure 11. Common Mode Rejection versus Frequency
VCC = +15 V VEE = -15 V VCM = 0 V VCM = 1.5 V
TA = 125C TA = +25C
VCM
40 20 0 10
CMR = 20Log
- ADM +
VO
VCM MVMNIA x xmi VO MMM DM
100
1.0 k
10 k
100 k
1.0 M
IL, LOAD CURRENT (mA)
f, FREQUENCY (Hz)
Figure 12. Positive Power Supply Rejection versus Frequency
+PSR, POWER SUPPLY REJECTION (dB) 120 100 80 60 40 20 0 10
VCC - ADM + VEE +PSR = 20Lo g VO
Figure 13. Output Short Circuit Source Current versus Temperature
|ISC|, OUTPUT SHORT CIRCUIT CURRENT (mA) 50 45 40 35 30 25 20 15 10 5.0 0 -55 -25 0 25 50 75 100 125 VCC, VEE = 2.5 V VCC, VEE = 15 V VID = 1.0 V RL < 100
PSR+ PSR-
VO/ADM MMNI VCC MMM
VCC = +15 V VEE = -15 V VCC = 1.5 V TA = 25C 10 k 100 k 1.0 M
100
1.0 k
f, FREQUENCY (Hz)
TA, AMBIENT TEMPERATURE (C)
MOTOROLA ANALOG IC DEVICE DATA
5
MC33282 MC33284
Figure 14. Output Short Circuit Sink Current versus Temperature
50 45 40 35 30 25 20 15 10 5.0 0 -55 VCC, VEE = 2.5 V VCC, VEE = 15 V ID , POWER SUPPLY CURRENT (mA) VID = 1.0 V RL < 100 3.0 2.5 2.0 1.5 VCC, VEE = 2.5 V 1.0 0.5 0 -55 -25 0 25 50 75 100 125 VCC, VEE = 15 V
|ISC |, OUTPUT SHORT CIRCUIT CURRENT (mA)
Figure 15. Power Supply Current versus Supply Voltage
-25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (C)
TA, AMBIENT TEMPERATURE (C)
Figure 16. Slew Rate versus Temperature
16 14 SR, SLEW RATE (V/s) 12 10 8.0 6.0 4.0 2.0 0 -55 -25 0 25 50 VCC = +15 V VEE = -15 V Vin = 20 V CL = 100 pF RL = 2.0 k 75 100 125 Inverting Amplifier Noninverting Amplifier GBW, GAIN BANDWIDTH PRODUCT (MHz) 50 40 30 20 10 0 -55
Figure 17. Gain Bandwidth Product versus Temperature
VCC = +15 V VEE = -15 V f = 100 kHz RL = 2 k CL = 0 pF
-25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (C)
TA, AMBIENT TEMPERATURE (C)
Figure 18. Gain and Phase versus Frequency
50 40 A V , VOLTAGE GAIN (dB) 30 20 10 0 -10 -20 2B 1B 2A 1A TA = 25C CL = 0 pF 80 100 120 140 160 180 200 220 240 260 100 M 0 10 , PHASE (DEGREES) A m, GAIN MARGIN (dB) 16 12 20
Figure 19. Phase Margin and Gain Margin versus Differential Source Resistance
50 Phase Margin
Vin R2 - + VO
40 30
Gain Margin 8.0 4.0 VCC = +15 V VEE = -15 V RT = R1 + R2 VO = 0 V TA = 25C 100 1.0 k 10 k 20 10 0 RT, DIFFERENTIAL SOURCE RESISTANCE ()
1A) Phase VCC = 18 V, VEE = -18 V -30 2A) Phase VCC = 1.5 V, VEE = -1.5 V -40 1B) Gain VCC = 18 V, VEE = -18 V 2B) Gain VCC = 1.5 V, VEE = -1.5 V -50 100 k 1.0 M 10 M f, FREQUENCY (Hz)
6
MOTOROLA ANALOG IC DEVICE DATA
m , PHASE MARGIN (DEGREES)
R1
MC33282 MC33284
Figure 20. Open Loop Gain and Phase Margin versus Output Load Capacitance
12 A m, OPEN LOOP GAIN MARGIN (dB) 10 8.0 6.0 4.0 2.0 0 10 50
- Vin + 2.0 k
Figure 21. Gain and Phase versus Frequency
0 m , PHASE MARGIN (DEGREES) 50 40 A V , VOLTAGE GAIN (dB) 30 20 10 0 -10 -20 -30 1A Gain VCC = 15 V VEE = -15 V 1A) Phase, VO = 10 V 2A) Phase, VO = -10 V 1B) Gain, VO = 10 V 2B) Gain, VO = -10 V 1.0 M 10 M 2A 1B 2B Phase TA = 25C CL = 0 pF 80 100 120 140 160 180 200 220 240 , PHASE (DEGREES)
Gain Margin
10 20 30 40
Phase Margin
VO CL
VCC = +15 V VEE = -15 V VO = 0 V 100 500
50 60 1.0 k
-40 -50 100 k
100 M
CL, OUTPUT LOAD CAPACITANCE (pF)
f, FREQUENCY (Hz)
Figure 22. Channel Separation versus Frequency
160 CS, CHANNEL SEPARATION (dB) 150 140 130 120 110 100 100 Drive Channel VCC = +15 V VEE = -15 V RL = 2.0 k VOD = 20 Vpp TA = 25C 1.0 k 10 k f, FREQUENCY (Hz) 100 k 1.0 M THD, TOTAL HARMONIC DISTORTION (%) 1.0
Figure 23. Total Harmonic Distortion versus Frequency
VCC = +15 V VEE = -15 V VO = 2 Vpp TA = 25C AV = +1000
0.1
AV = +100
0.01
AV = +10
AV = +1.0 10 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k
0.001
100 90 |zo |, OUTPUT IMPEDANCE ( ) 80 70 60 50 40 30 20
e n , INPUT REFERRED NOISE VOLTAGE (nV/ Hz)
Figure 24. Output Impedance versus Frequency
VCC = +15 V VEE = -15 V VO = 0 V TA = 25C AV = 10 AV = 100 AV = 1000
Figure 25. Input Referred Noise Voltage versus Frequency
50
Input Noise Voltage Test Circuit
40 30 20 10 VCC = +15 V VEE = -15 V TA = 25 C 0 10 100
200
+ - 200 2.0k
VO
10 0 10 k
AV = 1.0 100 k 1.0 M 10 M f, FREQUENCY (Hz)
1.0 k f, FREQUENCY (Hz)
10 k
100 k
MOTOROLA ANALOG IC DEVICE DATA
7
MC33282 MC33284
Figure 26. Percent Overshoot versus Load Capacitance
100 PERCENT OVERSHOOT (%) 90 80 70 60 50 40 30 20 10 0 10 100 CL, LOAD CAPACITANCE (pF) 1.0 k VO, OUTPUT VOLTAGE (50 MV/DIV) VCC = +15 V VEE = -15 V RL = 2.0 k TA = 25 C
Figure 27. Noninverting Amplifier Overshoot
t, TIME (1.0 S/DIV)
Figure 28. Noninverting Amplifier Slew Rate
VO, OUTPUT VOLTAGE (5.0 V/DIV) VO, OUTPUT VOLTAGE (5.0 V/DIV)
Figure 29. Inverting Amplifier Slew Rate
t, TIME (1.0 S/DIV)
t, TIME (1.0 S/DIV)
8
MOTOROLA ANALOG IC DEVICE DATA
MC33282 MC33284
OUTLINE DIMENSIONS
P SUFFIX PLASTIC PACKAGE CASE 626-05 ISSUE K
NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --- 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --- 10_ 0.030 0.040
8
5
-B-
1 4
F
NOTE 2
-A- L
C -T-
SEATING PLANE
J N D K
M
M
H
G 0.13 (0.005) TA
M
B
M
D SUFFIX PLASTIC PACKAGE CASE 751-05 (SO-8) ISSUE R
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. DIM A A1 B C D E e H h L MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_
A
8
D
5
C
E
1 4
H
0.25
M
B
M
h B C e A
SEATING PLANE
X 45 _
q
L 0.10 A1 0.25 B
M
CB
S
A
S
q
MOTOROLA ANALOG IC DEVICE DATA
9
MC33282 MC33284
OUTLINE DIMENSIONS
P SUFFIX PLASTIC PACKAGE CASE 646-06 ISSUE L
NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0_ 10_ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0_ 10_ 0.39 1.01
14
8
B
1 7
A F C N H G D
SEATING PLANE
L
J K M
D SUFFIX PLASTIC PACKAGE CASE 751A-03 (SO-14) ISSUE F -A-
14 8
-B-
1 7
P 7 PL 0.25 (0.010)
M
B
M
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
G C
R X 45 _
F
-T-
SEATING PLANE
D 14 PL 0.25 (0.010)
K
M
M
S
J
TB
A
S
DIM A B C D F G J K M P R
MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50
INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019
10
MOTOROLA ANALOG IC DEVICE DATA
MC33282 MC33284
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MOTOROLA ANALOG IC DEVICE DATA
11
MC33282 MC33284
How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454 MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
12
*MC33282/D*
MOTOROLA ANALOG IC DEVICE DATA MC33282/D


▲Up To Search▲   

 
Price & Availability of MC33282

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X